Tuesday, 2 June 2020

Amplitude, Period, Phase Shift, Vertical Shift, and Frequency - Problem 1


Given the equation y = 2 sin (4x − 0.5) + 3.
Find the following:
  • Amplitude 
  • Period 
  • Phase Shift 
  • Vertical Shift 
  • Frequency 
Solution:

\begin{equation} A = 2 \end{equation}

Answer: \begin{equation} A = 2 \end{equation}

\begin{equation} P = \frac{2 \pi}{B} \end{equation}
\begin{equation} P = \frac{2 \pi}{4} \end{equation}
\begin{equation} P = \frac{\pi}{2} \end{equation}

Answer: \begin{equation} P = \frac{\pi}{2} \end{equation}

\begin{equation} C = -0.5 \end{equation}

Answer: \begin{equation} C = -0.5 \end{equation} or 0.5 unit shifted to the right

\begin{equation} D = 3 \end{equation}

Answer: \begin{equation} D = 3 \end{equation} or 3 units shifted upward

\begin{equation} F = \frac{1}{P} \end{equation}
\begin{equation} F = \frac{1}{\frac{\pi}{2}} \end{equation}
\begin{equation} F \approx 0.637 \end{equation}

Answer: \begin{equation} F = 0.637 \end{equation}

No comments:

Post a Comment