Given the equation y = 2 sin (4x − 0.5) + 3.
Find the following:
- Amplitude
- Period
- Phase Shift
- Vertical Shift
- Frequency
Solution:
\begin{equation} A = 2 \end{equation}
Answer: \begin{equation} A = 2 \end{equation}
\begin{equation} P = \frac{2 \pi}{B} \end{equation}
\begin{equation} P = \frac{2 \pi}{4} \end{equation}
\begin{equation} P = \frac{\pi}{2} \end{equation}
Answer: \begin{equation} P = \frac{\pi}{2} \end{equation}
\begin{equation} C = -0.5 \end{equation}
Answer: \begin{equation} C = -0.5 \end{equation} or 0.5 unit shifted to the right
\begin{equation} D = 3 \end{equation}
Answer: \begin{equation} D = 3 \end{equation} or 3 units shifted upward
\begin{equation} F = \frac{1}{P} \end{equation}
\begin{equation} F = \frac{1}{\frac{\pi}{2}} \end{equation}
\begin{equation} F \approx 0.637 \end{equation}
Answer: \begin{equation} F = 0.637 \end{equation}
No comments:
Post a Comment